Web service quality control based on text mining using support vector machine

نویسنده

  • Shuchuan Lo
چکیده

Popular websites can see hundreds of messages posted per day. The key messages for customer service department are customer complaints, including technical problems and non-satisfactory reports. An auto mechanism to classify customer messages based on the techniques of text mining and support vector machine (SVM) is proposed in this study. The proposed mechanism can filter the messages into the complaints automatically and appropriately to enhance service department productivity and customer satisfaction. This study employs the p-control chart to control the complaining rate under the expected service quality level for the website execution. This study adopts a community website as an example. The experimental results demonstrated that namely the ability of the SVM to correctly recognize defective messages exceeded 83% with an average of 89% for the classifying mechanism, and the p-control chart was capable of reflecting unusual changes of service quality timely. 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sentiment Analisis on Web-based Reviews using Data Mining and Support Vector Machine

This work aims to use sentiment analysis techniques, data mining, text mining and natural language processing to indicate the polarity of texts using support vector machine. Weka software and a movie review database from Internet Movie Database IMDb were used. This work uses preprocessing filters and WRAPPER techniques and Support Vector Machine (SVM) for classification. It presents better resu...

متن کامل

NaCTeM CTD Web Services

Participating in the BioCreative IV CTD Curation shared task, we developed RESTful, BioCcompliant web services which recognise CTD chemicals, genes, diseases and actions terms in PubMed abstracts. The tools are based on machine learning approaches, specifically, conditional random fields (CRFs) for recognising names of chemicals, genes and diseases, and support vector machines (SVMs) for recogn...

متن کامل

Semantic-Based Web Mining For Image Retrieval Using Enhanced Support Vector Machine

This paper deals with the semantic-based web mining for image retrieval by means of enhanced Support Vector Machine (SVM). Generally, conventional Content-Based Image Retrieval (CBIR) systems are unsuccessful to satisfy users’ requirement because of the ‘semantic gap’ among the derived features and the user’s query. A large amount of existing approaches shows certain predetermined semantic cate...

متن کامل

A Comparative Study of Machine Learning Approaches for Text Classification

Perhaps the single largest data source in the world is the world wide web. Heterogeneous and unstructured nature of the data on web has challenged mining the web. Practical needs to extract textual information and unseen patterns continue to drive the research interest in text mining. Faultless categorization of texts can be better performed by machine learning techniques. In this paper we pres...

متن کامل

Opinion Analysis on Web-based Reviews Using Support Vector Machine

This work aims to use sentiment analysis techniques, data mining, text mining and natural language processing to indicate the polarity of texts using SVM (support vector machine). Weka software and a movie review database from IMDb (internet movie database) were used. This work uses preprocessing filters and WRAPPER techniques and SVM for classification. It presents better results when compared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2008